
ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 1

Aspect-Oriented Framework for Ontology Modularization

Mario J. Lorenzo

Nova Southeastern University

July 2019

Contact: mario@mjlorenzo.com or ml2159@nova.edu

mailto:mario@mjlorenzo.com
mailto:ml2159@nova.edu

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 2

Abstract

Ontologies traditionally have served the purpose of representing

knowledge by defining the relevant concepts and relationships for a

particular domain. Today, ontologies also serve as the foundation of

knowledge for AI and Cognitive systems. These ontologies can

quickly scale in size and complexity requiring additional system

resources and reducing reusability. The technique of Ontology

Modularization attempts to segment the ontology into smaller

reusable modules that improve the reusability of the ontology.

This paper proposes a new approach to modularizing an ontology

using an Aspect-oriented design paradigm. Previous research

produced complex meta-modeling methods and algorithms for

module extraction that fail to improve reusability. Recent research

has demonstrated the feasibility of an aspect-oriented approach

through proof-of-concept.

This proposed research seeks to address the problems and

limitations identified by previous researchers and demonstrated by

defining Aspect support within OWL ontology language along with

an Aspect weaving engine that improves modularity and reusability.

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 3

Background: Ontologies, Concepts, and Relationships

An ontology defines the concepts and relationships for a particular domain or subject

matter. Human subject matter experts who have a deep understanding for a given domain usually

construct the ontology. The construction of the ontology produces a vocabulary of concepts and a

set of relationships between pairs of concepts. The ontology can be represented as a graph where

vertices represent individual concepts and edges represent relationships between concepts.

An ontology concept represents a well-defined

idea within the domain. The concept may have

multiple surface-forms or labels. This means that

the same concept may occur in text documents

with a different textual representation. For

example, the concept of Cancer can occur in text

as “malignant neoplasm”, “Carcinoma”, or simply as “cancer”. All of these surface-forms

represent the same idea, the concept of “cancer”.

Another important aspect of the ontology is the relationships between concepts. An ontological

relationship between concepts describes how two concepts are related to each other. These

relationships can be taxonomic or semantic relationships. The taxonomic relationships define the

hierarchy of concepts starting with generic or abstract concepts down to very specific or concrete

subtypes of concepts.

Source: VCLA UCLA

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 4

For example, the concept “Non-Small Cell Lung Cancer” is a descendent or a subtype of the

concept “Lung Cancer” and “Lung Cancer” is a descendent of “Cancer”. This kind of relationships

is also known as subsumption or an “IS-A” relationship.

The ontology also defines other semantic relationships between concepts. These types of

relationships may be very domain specific. For example, “treats” may be a semantic relationship

that connects a treatment concept such as chemotherapy to a disease concept such as cancer. Here

is another example:

Application of Ontologies in AI Systems

Ontologies serve as a fundamental aspect to modern information extraction and cognitive

systems. There has been an increased interest in these kinds of systems over the last decade due to

the massive amount of unstructured documents available on the World Wide Web. Companies and

research organizations are looking to extract additional value from their collection of data by

 Cancer

Lung Cancer

Non-Small Cell

Lung Cancer

IS-A

IS-A

Advil Headache

treats

“Advil treats headaches”

NSAID
IS-A

Symptom
IS-A

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 5

gaining semantic understanding of their text documents in order to support business processes and

decision-making.

Ontologies also play an integral role in semantic search engines providing users with more

meaningful search results and recommendations. This approach typically involves enriching the

corpora of documents by identifying concepts and relationships from a related ontology. The

search query at runtime undergoes a similar enrichment. Lastly, ontological matching of concepts

between the search query and the documents can be used to produce semantically relevant

documents.

Ontology Modularization and State-of-the-Art

The construction of ontologies is a very complex and time-consuming task typically done

by subject matter experts. This makes building ontologies a very expensive endeavor. A new

discipline called Ontology engineering has surfaced to help bring a systemic process guided by

modeling patterns and best practices. Much like Software Engineers, Ontology Engineers must

work closely with subject matter experts in order to model an accurate and complete representation

of the domain within the ontology representation. Unfortunately, most of the prominent ontologies

in use across industries were developed prior to the formalization of the Ontology Engineering

discipline, therefore resulting in large monolithic ontologies that cannot be easily decomposed into

modules. This is in part due to the tight coupling and lack of cohesion that exists across the

concept-relationships. The practice of modularization for ontology was borrowed from Software

Engineering with the intent to improve modularity and therefore increase the reusability and

applicability of an ontology to a wider set of domains and use cases. This provides significant

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 6

value by reducing duplicate ontology development efforts where significant overlap exists and

therefore reducing project costs and duration.

The Aspect-Oriented Paradigm

The Aspect-Oriented Programming (AOP) paradigm provides a method for encapsulating

cross-cutting functionality that results from system decomposition occurring along the functional

requirements dimension and therefore producing the scattering of code that addresses non-

functional requirements throughout the system. This scattering ensues in dependencies that couple

different functional aspects of the system and preventing modularity. An Aspect encapsulates the

cross-cutting function away from the system using the principles of obliviousness and

quantification to describe the points of concerns termed pointcuts (Kiczales 1997).

An Ontology Modularization Example

The issues encountered in modular software design parallel the issues with Ontology

Modularization. Ontologies are decomposed with a focus on a specific domain, but often require

additional meta-information that cross-cuts the ontology. Examples of these cross-cutting concerns

can include information that provides temporal context, such as the time-frame constraints for a

relationship between concepts. The following example shows the country of Kosovo was

recognized by the United Kingdom. The time-frame for this occurrence would ideally be

encapsulated away from the core Countries ontology allowing for better reuse.

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 7

Another important example of a cross-cutting concern is the provenance of knowledge. This may

include the institution and methodology that established a relationship or defined a new concept

within the ontology. This sort of information is especially important within the healthcare domain

where many institutions collaborate in contributing to open medical ontologies but differ in their

standards for establishing medical facts (such as causal-relationships). As such, taking into account

the provenance of a relationship between a disease and a treatment is important to a treatment

recommendation system.

Another example for the need to capture these “non-functional” (non-domain) aspects of

the ontology deal with understanding the temporal context for a given relationship. An example of

this could be an ontology used within an industry that is regulated by a government entity. New

regulations are introduced and repealed on a frequent basis and preserving when a regulatory

obligation was introduced and when it expired is vital for understanding whether a business entity

is and was under compliance at a given point-in-time.

These cross-cutting concerns in the ontology serve as an inhibitor to modularizing the

ontology. Presently, an ontology engineer must use meta-modeling to represent these additional

elements across concepts and relationships within the ontology. This introduces synthetic concepts

and relationships not part of the domain, but required in order to satisfy the use case requirements

(Schäfermeier 2018). Not only does this grow the size of the ontology but it also erodes its

Source: (Schäfermeier 2014)

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 8

reusability into other related domains or use cases. Compounding this problem are the restrictions

imposed by some ontology languages, such as Owl, that are limited to binary relationships. This

limitation prevents an ontology engineer from defining a ternary relationship for qualifying

existing relationships with additional context. In the earlier example, the relationship

“recognizedBy” between Kosovo and United Kingdom could be turned into a ternary relationship

that links the concept of temporal occurrence. Although this approach does not resolve the

modularity issues described, it would at least loosen the coupling between the concerns to a

relationship. Instead, Owl would require additional concept class to be defined that includes the

temporal property which in turn would be inherited by all the country concepts within the ontology.

This produces very tight coupling and scattering of the temporal properties across the ontology.

Problem Statement and Goal

Ontology modularization techniques today require complex metamodeling and expensive

refactoring of existing ontologies. Improvements to the quality of modularity in turn improves the

reusability of the ontology (d’Aquin et al 2007). Current modularization techniques fundamentally

alter the structure of the original ontology by adding synthetic concepts in order to express cross-

cutting concerns (Schäfermeier and Paschke 2014). This problem is further compounded by the

ontology language constraints and lack of expressivity to model complex relationships (Doran et

al 2008).

The goal of this research is to explore the applicability of the Aspect-Oriented Design

paradigm to improving the quality of ontology modularity. The aim is to examine whether the use

of “ontology aspects” as a method for encapsulating non-functional cross-cutting concerns

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 9

improves modularity of an ontology as compared to alternative modularization methods proposed

by d’Aquin (2007) and Doran et al (2008, 2009). In completing this research, the successful

outcome should demonstrate better modularity scores, measured with d’Aquin’s (2007) ontology

modularity metrics, using a newly proposed “ontology aspect” and weaving engine for the Owl

ontology language. For additional background on Ontologies and the Modularization problem, see

Appendix A & C.

Significance, Relevance, and Brief Review of Literature

An ontology defines the concepts and relationships for a particular domain or subject

matter. An ontology concept represents a well-defined idea within the domain. An ontological

relationship between concepts describes how two concepts are related to each other (Maedche &

Staab 2001). The recently formed discipline of Ontology Engineering focuses on bringing a

systematic process guided by modeling patterns and best practices. Unfortunately, many prominent

and prevalent ontologies, especially those in healthcare such as (Unified Medical Language

System) UMLS, predate these best practices and are riddled with cross-cutting dependencies.

d’Aquin, Schlicht, Stuckenschmidt, and Sabou (2007) identify the problem of ontology

modularization while experimenting with knowledge selection methods. They observed that large

monolithic ontologies reduced reusability and increase maintenance efforts. d’Aquin et al describe

the similarities between modularity problems encountered in Software Engineering and those of

Ontology Engineering and propose algorithmic methods for modularizing an ontology. They

identify the need for an evaluation criteria framework for quantitatively measuring the modularity

quality of an ontology borrowing from the ideas put forth by Sant’Anna et al (2003) on the

Software Metrics Suite. This work demonstrated that better modularity characteristics can be

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 10

achieved through a graph-transformation of the original ontology and a module extraction query

method that produces a new sub-ontology. This approach, however, did not resolve the issue of

reusability because it produces a new ontology, that requires dual maintenance, and moves the

complexity from the ontology model into the module extraction query.

Doran, Palmisano, and Tamma (2008), also describe the problem of ontology modularity

hindering reusability and propose a common framework for ontology extraction. Doran et al,

address what they considered shortcuts in the ontology partitioning and module extraction methods

proposed by d’Aquin. Doran approaches the problem from a reuse scenario and proposes a module

selection querying framework and tooling called SOMET that performs selection, adaptation, and

combination of the ontology using SPARQL graph query language. Their solution attempts to hide

some of the complexity of module selection (querying) through a tool but do not provide a method

for improving ontology model itself, instead it is able to produce a sub-ontology that includes a

subset of the domain semantics with better modularity characteristics.

Schäfermeier and Paschke (2014, 2018) attribute the ontology modularization problem to

dependencies caused by cross-cutting concerns that produce tight coupling and scattering of non-

functional concepts and relationships throughout the ontology. Schäfermeier and Paschke identify

the Aspect-Oriented paradigm as a potential solution for encapsulating these cross-cutting

concerns into an ontology aspect. They cite several problems to address in future work including

support for ontology languages that lack annotation over the ontology elements. Schäfermeier and

Paschke also describe the need for a formal ontology pointcut language after attempting to use

Doran’s method leveraging the SPARQL query language, which resulted in unwieldy and

unintuitive queries for complex pointcuts.

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 11

This proposed research will address the issues cited by Schäfermeier and Paschke through

a new approach that features a weaving engine for the Owl ontology language and an aspect

definition that features an expressive pointcut language for selecting ontological points of interests.

This approach expects to demonstrate better modularity and reusability by providing ontology

engineers with the Ontology Aspect construct used to encapsulate the cross-cutting concerns in the

ontology. See appendix C for an illustrative example of an ontology modularization problem.

Barriers and Issues

Improving the modularity of an existing monolithic ontology does not appear to have a

universal approach (d’Aquin 2007), therefore all ontology modularization techniques are guided

by requirement heuristics that can be expressed as a selection criteria used to segment the ontology

into modules that produce a new ontology that produces only those relevant aspects represented

by the domain requirements. Unfortunately, this approach produces a new ontology that must be

maintained and kept in sync with the original ontology. The approach of ontology partitioning and

module extraction methods proposed in literature by d’Aquin and Doran failed to address the

underlying issue of reusability (Doran 2008).

Other approaches involve refactoring the ontology using meta-modeling to capture cross-

cutting concerns. Unfortunately, this proves to be difficult due to limitations in the ontology

language to model complex relationships such as ternary relationships. Instead, a workaround is

used by adding additional properties and relationships to the concept class to represent these cross-

cutting concerns. This however only reduces modularity and reuse and increases the complexity

of the model. Ideally, these additional synthetic concepts and properties should be encapsulated

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 12

as an Aspect that can be dynamically weaved into the ontology depending on the use case

(Schäfermeier 2018).

Defining an Aspect within the Owl ontology language has demonstrated feasibility but

encountered several issues with the complexity of the pointcut syntax used and the reliance on

annotations as a feature of the ontology language (Schäfermeier 2014). The approach did not

actually perform weaving of the aspect but instead used annotations to expose points of interest

for SPARQL queries used to perform selection (pointcut) over the ontology. Since Owl does not

provide any facility to construct a sub-ontology based on a query, the Owl ontology is transformed

to RDF and then using the RDF “construct” operation along with the SPARQL selection criteria

representing the pointcut, a new ontology is produced.

Instead an ideal solution would provide an intuitive and expressive pointcut language

capable of selection across concepts, relationships, and respective properties. In order to support

ontology languages that do not feature annotations, a weaving engine is required to merge and

produce an effective ontology with the desired aspects. This resulting ontology would be

considered terminal (read-only) and not intended to be extended or modified. This ensures that

changes occur through the defined Aspects or direct manipulation of the ontology model therefore

increasing reusability reducing duplication and improving modularity through encapsulation of the

cross-cutting concerns into aspects.

There does not currently appear to be a solution for targeting ontology axioms (i.e.

assertions about the ontology) without employing second-order logic that would not be possible

during the static-time pointcut selection. No solutions for this problem were found during literature

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 13

review. Instead, the proposed methods focus on Concepts, Relationships, and their properties

(Schäfermeier 2018).

Approach

This research proposes a new approach for addressing the Ontology Modularization and

Reuse problems through the creation of an Aspect Ontology Framework for the Owl Ontology

Language. The paradigm used by this new approach can be described as Aspect-Oriented Ontology

Design (AOOD) or Aspect-Oriented Programming (AOP). See appendix B for additional

background on AOP paradigm.

This proposed framework would include a specification defining the Aspect semantics

within an ontology meta-model, defines an intuitive pointcut syntax for selection, an Owl Aspect

weaving engine, and a tool allowing an ontology engineer (the user) an intuitive means for

interacting with this framework. This tool would be incorporated into an existing ontology editor

such as Protégé in the form of a plug-in.

The following describes the approach:

1. Define an Aspect ontology that will serve as a meta-model for describing Aspects within

the Owl ontology language. This meta-model will feature an “Aspect” class that can be

extended by a user-defined aspect. The approach would allow for separate smaller Owl

ontologies to be defined and kept apart from the core ontology. These models would

describe the cross-cutting concerns.

2. Define an Owl Aspect Pointcut Language that allows an ontology engineer to define the

points-of-interest for an Aspect. This pointcut language should include the minimal

expressiveness to perform selection allowing for targeting and restriction over class,

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 14

concept, relationship, and properties thereof. An evaluation of Description Logics (DL)

languages (Krötzsch 2012) will be conducted to identify the feasibility of leveraging this

specification as the underlying definition for the Aspect pointcut.

3. Define an Ontology Weaving engine and tool that will allow a domain expert to select from

a collection of available Aspects of interest for an ontology reuse scenario. This engine

should evaluate the pointcuts for each Aspect of interest and identify the ontological

element targets across the ontology. These Ontological elements include concepts,

relationships, and their properties. The engine will incrementally produce an internal

“aspectized” version of the ontology by

a. Inserting new concepts defined in the Aspect model

b. Including the relationships definition into the “aspectized” ontology and traversing

the ontology looking for pairs of concepts that satisfy the relationship.

Once the engine completes the weaving process, it will produce the “aspectized” view of

the ontology.

4. Define an Ontology Module extraction facility that can produce an “effective” ontology

that includes only those domain relevant elements that address the reuse scenario.

a. Using the proposed Aspect pointcut definition language, a module selection can

occur based on the desired domain requirements.

b. This module extraction facility can include extraction algorithms proposed d’Aquin

and Doran in order to find the Least Common Ancestors for a vocabulary of

concepts and relationships that the ontology engineer can choose from. Using this

approach, the aspectized view of the ontology is traversed and an “effective”

ontology module is produced that satisfy the selection algorithm criteria.

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 15

5. Measure the quality of the effective ontology produced by using d’Aquin’s Ontology

Modularization Evaluation Criteria Framework. This evaluation framework measures the

characteristics of the ontology model including size (number of concepts and properties),

redundancy, connectedness (number of relationships within and across modules), and

distance between axioms in different modules. Using these metrics, a comparison between

the “effective” ontology module produced by this new approach can be compared to the

modules produced by d’Aquin(2007), Doran (2008), and Schäfermeier (2018).

An exploration of additional quantitative metrics that can be included into the metrics suite

that evaluates the semantic aspects of the ontology in addition to the structural aspects

already covered by d’Aquins evaluation framework.

This proposed approach seeks to provide an improvement over Schäfermeier and Paschke’s

proof-of-concept because it formalizes a pointcut language, does not require transformation into

RDF (an alternative ontology representation), and introduces an Ontology Weaving engine. This

approach will apply the insights described by Schäfermeier and Paschke of leveraging an ontology

meta-model to encapsulate aspects. The approach will also apply the insights from Doran et al

(2008) of a common framework for ontology modularization and the idea of using a query

language to perform selection over the ontology for module extraction and ontology segmentation.

Lastly, the proposed approach will apply insights gained from the AspectJ compile-time weaving

engine into the proposed Owl Aspect Weaving Engine.

The study format will follow a quantitative quasi-experimental approach. Validation of the

proposed method will be conducted by leveraging an existing open Ontology to serve as the control

during experimentation of different ontology modularization methods including the proposed

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 16

method. The only variable in the experiment will be the modularization methods under review.

The results will be quantitatively evaluated using the established ontology modularity metrics by

d’Aquin et al (2007).

This study will present the comparative results between the current modularization methods

and the proposed methods. The study will additionally examine the strengths and weakness of each

method and propose future work.

Resources

Access to a large real world ontology used as a control to evaluate the various method is a

requirement. This paper would use the ontologies provided by the National Library of Medicine

called Snomed CT which covers a broad spectrum of Healthcare domain. Access to high-

performance computing with 128gb of RAM memory. The Java Programming Language will be

used to develop the executable parts of this study including the aspect weaving engine and tooling.

The use of freely available Protégé Ontology Editor will be used to work with the ontologies.

ASPECT-ORIENTED DESIGN FOR ONTOLOGY MODULARIZATION 17

References

Schäfermeier, R., & Paschke, A. (2018). Aspect-Oriented Ontology Development. In Synergies

Between Knowledge Engineering and Software Engineering (pp. 3-30). Springer, Cham.

Schäfermeier, R., & Paschke, A. (2014, September). Aspect-Oriented Ontologies: Dynamic

Modularization Using Ontological Metamodeling. In FOIS (pp. 199-212).

Doran, P. (2009). Ontology modularization: principles and practice (Doctoral dissertation,

University of Liverpool).

Doran, P., Palmisano, I., & Tamma, V. A. (2008). SOMET: Algorithm and Tool for SPARQL

Based Ontology Module Extraction. WoMO, 348.

d’Aquin, M., Schlicht, A., Stuckenschmidt, H., & Sabou, M. (2007, September). Ontology

modularization for knowledge selection: Experiments and evaluations. In International

Conference on Database and Expert Systems Applications (pp. 874-883). Springer, Berlin,

Heidelberg.

Krötzsch, M., Simancik, F., & Horrocks, I. (2012). A description logic primer. arXiv preprint

arXiv:1201.4089.

Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., & Von Staa, A. (2003, October). On the reuse

and maintenance of aspect-oriented software: An assessment framework. In Proceedings of

Brazilian symposium on software engineering (pp. 19-34).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M., & Irwin, J.

(1997, June). Aspect-oriented programming. In European conference on object-oriented

programming (pp. 220-242). Springer, Berlin, Heidelberg.

Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent

systems, 16(2), 72-79.

