
REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 1

	

Review of Relational Methods for Information Extraction

Mario J. Lorenzo

IBM

November 2018

Contact: mario@mjlorenzo.com or mjlorenz@us.ibm.com

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 2

	
Abstract

This paper will review a novel approach taken within the field of information extraction based on
the relational database model. Current methods and frameworks for information extraction make
use of grammar-based languages, such as regular expressions, in the form of rule patterns that
are applied sequentially to unstructured text, such as a document, in order to produce spans of
text that represent some meaning within a domain. These grammars are typically applied in a
cascading fashion where rules are applied in a priority order over the result of a previous rule.
This approach is known to become very difficult to maintain and scale as the rules for the
information extraction tasks grow. The performance of this approach quickly degrades as the
document sizes increase. This paper will survey the use of a relational model for constructing
SQL-like statements to represent information extraction rules. These statements can then be
translated into an execution plan where additional optimization is performed using well-known
query optimization algorithms producing an optimized execution plan.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 3

	
Table of Contents

Introduction Page 4

Background Page 4

Review of Cascading Grammar Methods Page 6

Review of Relational Model Methods Page 11

Optimization and Performance Page 16

Challenges and Issues Page 19

Future Work and Conclusion Page 20

References Page 22

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 4

	
Introduction

The volume of unstructured data produced each day by social media, user forums, and

online journals continue to grow at rapid rate. This data is typically written in human natural

languages and therefore lacks structure and definition required by computer systems in order to

capture its semantic meaning. The field of information extraction seeks to develop methods to

process this data in a systematic way to produce structured information that can be stored in

conventional relational database for further analysis via relational querying and data mining

techniques.

This paper will focus on relational methods and frameworks for addressing numerous

challenges involved with information extraction through the application of relational database

theory. This work includes a survey and review of the state-of-the-art of information extraction

using relational methods that build on the success of the modern relational database system first

pioneered by Astrahan et al (Astrahan et al 1976). This paper will also explore the current

barriers faced by this approach and identify future work to address these challenges.

Background

The practice of extracting information from unstructured data with rules is not new or

novel. The classic rules-based approach typically employs the use of regular expression

grammars by experts to extract entities and relationships from text. Through a systematic

application of these rules, information is transformed from unstructured to structured that can

then be persisted in a relational database schema. Once the data is stored in a relational form, it

can easily be analyzed through querying and data mining techniques.

The field of information extraction was formalized during several conferences held

during the 1980’s. Many of these conferences were organized by the DARPA (Defense

Advanced Research Projects Agency) organization, which was looking to automate the

processing of military intelligence reports by extracting information from these reports into

specific structured fields. Their focus was around reducing the human labor required to process

these reports with the intent of reducing the latency within the workflows that supported

intelligence agencies. One of these major conferences was the Message Understanding

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 5

	
Conference (MUC) held in 1987 that invited academic and industry groups to define and

formalize the information extraction as a field (Fagin et al, 2016).

The motivations for studying and improving the accuracy and efficiency of Information

Extraction are rooted in the need for organizations to process the large volume of unstructured

text that is produced daily in this information age. The ability for an organization to gather

insights by mining information from social media feeds, online publications, blogs, and user

forums can provide a competitive edge. Today, enterprise uses information extraction to support

brand and reputation management (responding to social media comments), business intelligence

(including sales leads and targeted marketing), automation of data entry, and monitoring business

interests (such as within the area of pharmacovigilance monitoring for adverse effects of

medication). All these areas get a considerable amount of attention and investment due to its

impact to expanding revenue opportunities as well as improving efficiency (Chiticariu et al,

2010).

Information Extraction (IE) can be broken down into various tasks. These tasks include

the detection of Entities, Relations, Events, Sentiments, Co-references, and Table extraction.

These tasks can be carried out using various methods. For Entity extraction, a common approach

is to use a construct called a Dictionary, which represents the terms of interest for a given

domain. Dictionaries are typically used by pattern matchers that scan through a document and

marks (or annotates) the span (or offset location) for terms matched within the dictionary. The

resulting spans represent the entities extracted from the document. Another method for extracting

entities involves the use of rules. These rules are typically represented as regular expression

grammars. These expressions may look for certain patterns of characters such as capitalized

words that may indicate that a proper noun, such as the name of a person, is being referenced.

Figure 1 demonstrates the extraction of two person names, ‘Bob Scott’ and ‘Holly Smith’ from a

passage of text. The method for extracting these names could have been dictionary based that

enumerates person names or a regular expression that looks for capitalized words.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 6

	

	

Figure	1

Once entities spans have been identified within a document, they can be used to support

the Relationship extraction task. Relationships describe some semantic meaning between two

entities. These relationships can take various forms. The relationship can be taxonomic, such as a

hierarchical ‘IS-A’ relationship between entities. For example: ‘Cancer’ IS-A ‘Disease’. The

relationships can be ontological, such as ‘Advil’ treats ‘Headaches’. These relationships can also

be syntactic, such as the relationship between a word within a sentence and it’s corresponding

part-of-speech (noun, verb, adjective, etc) or semantic role. Lastly, relationships can represent

referential binding between words such as subject and objects or noun and pronouns. These tasks

for extracting relationships may be represented using rules that enumerate the relationships of

interests and these rules can be represented as a collection of regular expressions, annotation

patterns, or other relationship graphs.

Review of Cascading Grammar Methods

Most modern programming languages today provide support for regular expressions. The

availability of regular grammars makes them a popular choice for programmers to extract

information from text. Regular expressions are typically interpreted by a Finite-State Transducer

(FST) that accepts input as a sequence of characters and produces an output based on the

transitions between pre-defined states within the FST. Figure 2 illustrates an example of a finite-

state machine (FS) that accepts characters (in blue) as input and produces characters (in green) as

output. Regular expressions can be compiled into an

FS machine that is interpreted by a FST at runtime to

process input text and produce output (Boguraev et al,

2004).

Figure	2

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 7

	
Boguraev et al assert that the finite-state matching and transduction over tokens and

annotations provides flexibility and convenience through rapid configuration of custom analysis

engines that can be layered within a pipelined architecture of interoperable components based on

a formal language description (regular expression syntax) that sits on top of a separate FS

abstraction which serves as the FST interpretation engine (Boguraev et al, 2004). Boguraev et al

are the first to propose a finite-state cascading approach for supporting patterns of annotations in

addition to tokens enabling the ability to layer regular grammar expressions on top of prior

expressions. This approach addressed known limitations where multiple sub-expressions were

composed into a single expression resulting in an exponential growth of total number of

expressions required to cover all combinations of rule segments. For example, identifying a

mailing address from documents may take on different forms. Ideally, this problem can be

decomposed into smaller extraction tasks that scan for person names and then look for cities and

states referenced within the surrounding text of the person name. This task is further complicated

by the occurrence of intermediate tokens that represent a phone number or an email address.

Rather than having to enumerate expressions for every combination of these tokens and allowing

for the existence of certain intermediate tokens. Boguraev et al propose a method for

decomposing such expressions into smaller parts by allowing for separate layered expressions

that can detect atomic segments of the tasks. Figure 3 is an example of a closing signature

commonly found within an email that contains person names, cities, states, email, street address,

and phone numbers. These parts can be extracted by atomic expressions, which in turn can be

referenced by a series of cascading expressions. This approach is an example of a layered

abstraction that helps reduce the

complexity for describing the

rules of a given extraction task.

Figure 4 shows an example of

how these cascading expressions

can be used to build upon

previous expressions to produce

a higher-level expression.

Figure	3,	example	of	an	email	signature

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 8

	

	

Figure	4,	example	of	cascading	grammar	for	extracting	signature

The cascading approach also addressed issues when multiple expressions matched on

overlapping spans producing ambiguity that could only be resolved by assigning priorities to the

rules. Unfortunately this approach is very brittle since priorities are fixed and therefore may not

always reflect the correct resolution for a given extraction task (Yunyao et al, 2011).

 Another important aspect contribution to the grammar expression method for information

extraction was the definition of a common specification for representing the rules. Appelt et al,

presented the Common Pattern Specification Language (CPSL), which today is considered a de

facto standard (Appelt et al 1998). This specification helped provide a uniform language for

expressing these regular expressions that was independent of the underlying interpretation engine

allowing for portability of these patterns across various frameworks. This was an important

contribution and would prompt the creation of multiple frameworks, tools, and architectures for

representing text analysis pipelines that leveraged CPSL-based annotators that could be pipelined

to perform complex tasks. Many of these frameworks and architectures have been developed to

help address the complexity of managing and executing large collections of rules for large data

sets. Examples of these frameworks include the Java Annotation Pattern Engine (JAPE)

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 9

	
(Cunningham 1999), General Architecture for Text Engineering (GATE) (Cunningham 2002),

and Unstructured Information Management Architecture (UIMA) (Ferrucci et al 2004).

A major drawback with using regular expression grammar approach for information

extraction is quickly encountered when scaling to large data sets and/or a large collection of rules

(Reiss et al 2008). Reiss et al demonstrate that these scaling issues are inherent limitations of

cascading grammar languages that can only be resolved through applying additional parallel

computing but lack direct optimization of its methods.

Another issue with the cascading grammars approach is observed when there exists

ambiguity caused by variations in text that can produce overlapping results by several

expressions. Although applying a priority to the rules can mitigate some issues, this is often not

sufficient for more complex extraction patterns. The following example helps illustrate the

ambiguity issue caused by overlapping grammar expressions.

	

Figure	5,	example	rules	for	extracting	person	names

When applying the extraction rules shown in figure 5 to the passage of text shown in

figure 1, it produces multiple spans (annotations) for the tokens “Tomorrow”, “Bob”, “Scott”,

“Holly”, and “Smith”. Some of these tokens received multiple overlapping spans such as “Bob”,

“Scott”, and “Holly”, which were identified by the FirstName rule and the Cap (or Capitalized

name) rule. The token “Scott” was identified by all three rules including FirstName and

LastName. Figure 7 shows the resolution to the overlap ambiguity after applying the rule priority

shown for each rule in figure 5. This resolution produces an incorrect result that assigns “Scott”

as a FirstName instead of a LastName.

	

Figure	6,	result	of	applying	rules	for	extracting	person	names	

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 10

	

	

Figure	7,	shows	the	incorrect	assignment	of	Scott	to	First	Name

Due to the cascading dependencies of these rules, this incorrect assignment propagates through

the downstream rules ultimately producing incorrect results. This is demonstrated when

attempting to apply expressions that identify a Person.

Figure 8 illustrates an example of three rules that depend on

the result of the previous rule set in order to identify a

Person. These rules are not looking for patterns of tokens or

characters but instead looking for patterns of previously

labeled spans that trigger the production of a Person span.

When these rules are applied over the previous result, it incorrectly produces three persons as

follows: “Bob”, “Scott”, and “Holly Smith”. The identification of “Scott” as a person was

caused by the incorrect resolution to the ambiguity that “Scott” can

sometimes refer to a first name and sometimes can refer to a last name.

Because the first set of rules matched Scott as both, the priority of these

rules was applied to ultimately assign Scott as a first name. This

incorrect assignment caused the rule <First> to detect Bob and Scott

and then <First> <Last> to detect Holly Smith producing a total of

three persons instead of one.

 This simple example helps demonstrate the issue known as Lossy Sequencing

encountered when applying a cascading grammar approach where overlapping spans are dropped

at a lower layer and therefore produces erroneous results at a later layer of rules. As the number

of rules and cascading layers grows, the cost of maintenance increases dramatically resulting in a

very brittle system where regression can be introduced even for very minor changes to these

rules. Due to the cascading nature of these expressions and their interdependencies, changes

made in one expression will also require a cascade of changes to avoid breaking rules (Chiticariu

Figure	8,	rules	for	extracting	Person	from	
First	Name,	Last	Name,	and	Cap	spans.

Figure	9,	Persons	identified	
by	cascading	rules

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 11

	
et al, 2018). This growth of complexity is also observed in the degradation of system

performance when executing large collections of rules over large documents. Reiss et al

demonstrates that scaling issues are inherent limitations of cascading grammar languages (Reiss

et al, 2008). Chiticariu et al present a thorough comparative assessment of cascading grammar

performance across different CPSL-based (Appelt et al, 1998) frameworks such as JAPE

(Cunningham et al, 1999) and GATE (Cunningham et al, 2000). The result of this assessment

demonstrated the exponential growth in processing time as the complexity of rules and document

sizes grow (Chiticariu et al, 2010).

Review of Relational Methods

An alternative method for information extraction proposed by Reiss (Reiss et al 2008)

and further developed by Krishnamurthy (Krishnamurthy et al 2009), applied the relational

database model (Astrahan, 1976) by leveraging relational algebra for representing information

extraction rules and defined an extension to SQL called Annotation Query Language (AQL).

This approach allows information extraction to benefit from years of database research in the

areas of query optimization and execution strategies. AQL supports relational operators such as

projection, selection, join operations (among others) and further extends it with special extraction

operators over word-tokens allowing for dictionary-based and pattern-based matching. This

approach also defines an extension to the relational data model by exposing an entity type called

a “Span” that is represented as offsets <begin, end> within a document. Documents are

represented as a relational table of tuples that have been previously tokenized (or chunked) into

sentences. Each sentence is represented by a tuple with the begin and end offsets marking the

start and ending position of each sentence relative to the whole document.

Information extraction occurs through the process of defining relational queries that

represent annotations as relational views over the initial Document table produced by tokenizing

the document into sentences. Through the use of “SELECT-FROM-WHERE” statements,

information is extracted from unstructured form to a relational schema representation. The result

Figure	10,	extended	relational	data	model	for	information	extraction

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 12

	
of these statements is placed in a new View that can be selected and projected to construct

additional Views. These statements can be compiled into relational algebra where query-style

optimization is performed. Lastly, the optimized algebra is assembled into an execution plan that

is further optimized based on a cost-model. Figure 11 depicts the process of compiling and

optimizing AQL into an execution plan.

Recent work by Fagin et al (Fagin et al 2016) formalizes this AQL relational algebra and

language proposed by Reiss and Krishanmurthy in a theoretical framework called “Document

Spanners” and proves that the expressivity of these relational languages is expressively

equivalent to regular grammar languages. Further work by Fagin et al demonstrates how

additional techniques such as “consolidation” of overlapping spans further enhances the

expressivity of the framework (Fagin et al 2013). Fagin asserts that the balance between

simplicity and expressivity of an IE language is crucial to its adoption in the real world. The

language must have straightforward semantics so that it is easy to understand and debug but must

be minimally expressive in order to address complex extraction tasks. Freydenberger et al build

upon Fagin’s work by comparing the expressive power of the Document Spanner framework to

other extraction models including extended regular expressions (Freydenberger et al, 2017).

AQL statements can be aggregated together using SQL-like JOIN operations that

combine the tuples into a new view that where the JOIN predicate condition evaluates to true.

Aggregation is typically performed over previous views that extract additional fields (attributes)

using a Dictionary or a Regular Expression pattern. The statement shown in figure 12 below

serves as an example of a rule for extracting capitalized words (i.e. names) from the document.

The statement begins with a “create view” indicating that a new view will be produced within the

relational model followed by the “extract regex” which indicates the use of a regular expression

that will be applied across the tuples in the Document table. The “as name” defines the name for

the field (or attribute) name that will be used to hold the matched text by the regular expression.

Figure	11,	AQL	Compilation	process

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 13

	
Applying this rule (figure 12) to the previous example in figure 6 produces a new table view

called Caps that contains tuples with the name values of “Tomorrow”, “Bob”, “Scott”, “Holly”,

and “Smith”. This rule is equivalent to the <CAPS> rule example shown in figure 5.

Another common extraction uses the “extract dictionary” operation that scans each tuple

within the Document table looking for tokens that match words defined within the dictionary.

The dictionary construct is a simple list of terms that can be enumerated within a plain text file or

defined inline within AQL using a “create dictionary” statement followed by a comma separated

list of string. The following example shows the AQL statement for extracting LastName from the

Document table.

Applying the above AQL to the text in figure 6 produces a new view called Last with two

tuples including the names “Scott” and “Smith”. The same approach can be used to extract first

names using a dictionary that contains a list of first names. These statements collectively provide

create	view	Caps	as	
extract	regex	/[A-Z](\w|-)+/	on	D.text	as	name		
from	Document	D	

Figure	12,	example	of	an	AQL	statement	for	extracting	
capitalized	words	from	the	Document.

create	view	Last	as	
extract	dictionary	LastDict	on	D.text	as	name		
from	Document	D	

Figure	13,	result	of	
applying	AQL	rule	in	
figure	12	to	figure	6	text.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 14

	
the atomic annotations for extracting first and last names annotations. Next these resulting views

need to be joined together to produce the Persons. Figure 14 shows an example AQL program

that extracts the Persons by combining the views produced by the First, Last, and Caps

statements.

	

Figure	14,	AQL	statement	that	produces	Person	from	First,	Last,	and	Caps	views.		(Chiticariu	et	al,	2010)

The approach taken involves first performing a select query that joins <First> with

<Caps>, <First> with <Last>, and <First> followed by the union of the resulting tuples. The

operator “CombineSpans” is used to concatenate the span offsets between to Spans. This

produces a new Span where the beginning offset is the smaller of the two and the ending offset is

the greater of the two spans. This results in a longer span that covers both provided span. As an

example, combining the first span in a document with the very last span would produce a new

span that holds a string containing the entire document, where the first span starts at offset 0 and

the second span ends at the length-1 of the document. Another operation used is “FollowsTok”

that serves as a predicate within the select operation that requires that one span must occur after

another span. This enforces a specific order. Figure 14 includes two uses of “FollowsTok”. The

first use occurs where First Name must precede Cap spans. The second use requires First Name

precedes Last Name. The ability to enforce a specific order helps prevent invalid (or spurious)

tuples with patterns that are not recognized as Persons. This also serves as a performance

optimization since it reduces the result set of tuples produced by each SELECT operation.

Finally, the use of “consolidate” is used to combine final tuples produced in the Person view

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 15

	
using the name field as the consolidation field. The following illustration shows the step-by-step

result when applying the AQL for extracting FirstName, LastName, Caps, and lastly Person

views.

	

(Chiticariu	et	al,	2010)	

This relational method for information extraction allows for overlapping spans to flow

through to a higher-order rule (or layer) where it can then be disambiguated within the context of

a particular rule objective. In this example, the consolidate operation is applied to all the names

resulting in a correct final result that includes two persons: “Bob Scott” and “Holly Smith”.

In addition to these basic operators, AQL also features semantic and syntactic role

labeling (SRL) facility, expanding the expressivity of the language by allowing for additional

qualifiers within conditional JOIN predicates (Chiticariu et al, 2010). This helps further reduce

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 16

	
ambiguity caused by words that can have multiple meanings or can be used in different parts-of-

speech.

Optimizations and Performance of Relational Methods

The relational-based information extraction rules appear to have a natural performance

advantage over a corresponding regular expression rule. In many cases a hand-tuned regular

expression rule executed an order-of-magnitude slower than an un-optimized relational rule.

Because regular expressions operate over characters and relational rules provide semantics for

operating over whole tokens (such as terms defined by a dictionary table) or other views, the

search space is reduced for a relational rule and therefore results in a faster processing time

(Krishnamurthy et al 2009).

 The primary advantage for a relational-rule is the ability to optimize an execution plan

that represents a collection of rules at compile-time. Using relational query optimization theory,

a search for the optimal execution plan is identified at compile time resulting in dramatic

improvement in runtime performance (Krishnamurthy et al 2009). Krishnamurthy et al found an

additional order-of-magnitude improvement when comparing optimized relational rules to un-

optimized relational rules. The optimization techniques include

cost-based optimization of operations such as with the “conditional

evaluation join” (CEjoin) operator by avoiding evaluation of the

right-hand argument when left-hand produces no tuples

(Krishnamurthy et al 2009). An example of this optimization

occurs when the evaluation of one side of the JOIN fails to produce

any tuples. This allows for skipping the other side of the JOIN to

avoid needless computation. For example, in figure 15 if the left-

hand side Dictionary does not produce any result, then there is no

need to apply the expensive Regex (right-hand-side) of the

Dictionary.

Another optimization technique involves pushing down selection and projection

operators within the AQL operator graph. This approach works by reducing the intermediate

Figure	15	

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 17

	
results produced at earlier stages of the operator graph and therefore reducing the computation

required when evaluating predicates within Join operations (Reiss et al, 2008). The following

operator graph shows an example of pushing down the projection and selection.

	

(Chiticariu	et	al,	2010)	

Because the projection applied to relation A and B is performed at an earlier point, the

resulting number of fields (columns) that is carried forward is reduced. Similarly, by pushing

down select operators, the number of tuples is reduced.

Another important optimization technique involves JOIN reordering. Because JOIN

operations are commutative, it is possible to rearrange the order of the joins. The total number of

unique arrangements that must be considered grows exponentially. A naïve approach would

consider each possible join order evaluated using a cost-model to choose the lowest estimated

cost. This however results in unnecessary overhead and wasted work since the cost of a sub-plan

will be recomputed multiples times. Dynamic Programming algorithms are effective at optimally

evaluating problems where recomputation can be avoided using a cache to store previously

computed sub-plans. The following illustration shows multiple rearrangement options produced

by reordering the joins from an initial plan. An example of the reoccurring sub-plans is shown in

red. If the A	 B	sub-plan	is	evaluated	once,	it	can	be	cached	and	used	later	to	avoid	duplicating	the	

calculation.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 18

	

	

(Chiticariu	et	al,	2010)	

Selinger et al proposed a dynamic programming algorithm for optimally evaluating to

most efficient join ordering (Selinger et al, 1979). Selinger was a pioneering member of the IBM

team that developed System R, considered the first relational database. Selinger et al presented

the following recursive formulation for considering left-deep plans:

The following example shows the computation applied using Selinger’s algorithm for R1

R2 R3 R4:

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 19

	
 In addition to query optimization techniques, other techniques focus on optimizing

extraction operators such as “extract dictionary” and “extract regex” such as the examples shown

earlier in figure 14. The first method is called Shared Dictionary Matching. This method helps

combine all the dictionaries used by the AQL program into a single dictionary. This shared

dictionary allowed for removing redundant dictionary entries and avoids duplicate copies of

dictionaries held in memory (Reiss et al, 2008). Dictionaries can be represented as a tree of

characters with terms located at the leaves allowing for linearithmic search times for matching

dictionary tokens. By combining multiple dictionaries into one large dictionary, there is only one

tree structured required that preserves its depth and only increases the number of leaves

(Chiticariu et al, 2010).

 The other optimization focuses on the “extract regex” operator. Reiss et al assert that

some regular expressions can benefit from a simpler but less expressive regular expression

matcher that does not allow for group capturing, look-back, or peek-ahead but has significantly

better performance. By applying Regular Expression Strength Reduction, the evaluation of the

regular expression can be performed faster because it does not require certain extended

capabilities of full strength regular expressions (Reiss et al, 2008). This novel approach proves to

be pivotal in speeding up the evaluation of AQL plans at runtime. Chiticariu et al demonstrate

the performance evaluation of AQL compared to JAPE (Cunningham et al, 1999), which uses

cascading grammar method. Their results show a 10x improvement in throughput when

comparing to a hand-tuned (i.e. optimized) equivalent regular expressions.

Challenges and Issues

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 20

	
A critical aspect of information extraction is the accuracy of the information produced by

the rules framework. Liu et al proposes a semi-automatic rule refinement technique that uses

database tuple provenance to improve the precision while preserving recall accuracy. The rule

refinements eliminate false positives using back-tracking over tuple provenance to correct or

rewrite a rule (Liu et al 2010). Unfortunately this approach can only improve false-positives,

which impact precision accuracy, but no method is presented for addressing false negatives or

low recall accuracy.

Another challenge with the relational approach is the learning curve that must be

overcome to educate programmers to build these programs. Most programmers are familiar with

constructing and using regular expressions to extract strings from text. Learning a new paradigm

and language such as AQL, creates a barrier to adoption and may explain why this approach has

not become widely adopted by industry or academia.

AQL programs tend to be compiled as modules that include both the executable

statements (i.e. the AQL program) as well as the data resources (such as dictionaries and tables)

used by these programs resulting in an anti-pattern that makes it difficult to dynamically

configure different dictionaries at runtime. This means that multiple versions of the same AQL

program needs to be compiled and loaded for each domain that does not share the same

dictionary resources.

Lastly, the dependency on a Database System introduces additional overhead and

complexity to the deployment and maintenance of programs. The popularity of cloud-native

application and micro-services has influenced the building of smaller lightweight programs that

can be constantly started and stopped based on volume. This relational system for information

extraction would require a redesign to support a more service-based approach that can allow for

this dynamism.

Future Work and Conclusion

The relational methods for information extraction presented in this paper are based on a

theoretical foundation that benefits from years of research in the areas of query optimization and

execution. This approach shows great promise in its ability to reduce the complexity of large-

scale information extraction systems while providing faster computation of IE tasks without the

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 21

	
maintenance issues encountered with cascading grammar alternatives. Furthermore, the

relational methods demonstrate advantages in dealing with ambiguity and therefore increasing

the relative accuracy of IE tasks.

The relational method for IE remains an active area of research. Additional work is

needed to explore dynamic optimization by taking into account actual costs, instead of just

estimated costs, at runtime. This improvement has the potential to provide an additional

performance gains. Another area that can be improved is the development of visualization tools

and intuitive editors for allowing non-technical subject matter experts to construct AQL

programs without requiring formal education in computer science and AQL programming.

Finally, the inclusion of additional operators such as String concatenation functions that are not

available today, but often required when attempting to construct new view with attribute values

that are composed of non-contiguous spans of text.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 22

	
References

Appelt, D. E., & Onyshkevych, B. (1998, October). The common pattern specification language.
In Proceedings of a workshop on held at Baltimore, Maryland: October 13-15, 1998 (pp.
23-30). Association for Computational Linguistics.

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N., Griffiths, P.

P., ... & Putzolu, G. R. (1976). System R: relational approach to database management.
ACM Transactions on Database Systems (TODS), 1(2), 97-137.

Boguraev, B. K. (2004). Annotation-based finite state processing in a large-scale NLP

architecture. Recent Advances in Natural Language Processing III: Selected Papers from
RANLP 2003, 260, 61.

Chiticariu, L., Li, Y., Raghavan, S., & Reiss, F. R. (2010, June). Enterprise information

extraction: recent developments and open challenges. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data (pp. 1257-1258). ACM.

Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F. R., & Vaithyanathan, S. (2010,

July). SystemT: an algebraic approach to declarative information extraction. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
(pp. 128-137). Association for Computational Linguistics.

Cunningham, H., Maynard, D., & Tablan, V. (1999). JAPE: a Java annotation patterns engine.
Cunningham, H. (2002). GATE, a general architecture for text engineering. Computers and the

Humanities, 36(2), 223-254.

Fagin, R., Kimelfeld, B., Reiss, F., & Vansummeren, S. (2016). A relational framework for

information extraction. ACM SIGMOD Record, 44(4), 5-16.

Fagin, R., Kimelfeld, B., Reiss, F., & Vansummeren, S. (2013, June). Spanners: a formal

framework for information extraction. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of database systems (pp. 37-48). ACM.

Ferrucci, D., & Lally, A. (2004). UIMA: an architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering, 10(3-
4), 327-348.

Freydenberger, D. D., & Holldack, M. (2017). Document spanners: From expressive power to

decision problems. Theory of Computing Systems, 1-45.

Jayram, T. S., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., & Zhu, H. (2006). Avatar

information extraction system. IEEE Data Eng. Bull., 29(1), 40-48.

REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 23

	
Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., Vaithyanathan, S., & Zhu, H. (2009).

SystemT: a system for declarative information extraction. ACM SIGMOD Record, 37(4),
7-13.

Li, Y., Reiss, F. R., & Chiticariu, L. (2011, June). SystemT: A declarative information extraction
system. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Systems Demonstrations (pp. 109-114).
Association for Computational Linguistics.

Liu, B., Chiticariu, L., Chu, V., Jagadish, H. V., & Reiss, F. R. (2010). Automatic rule

refinement for information extraction. Proceedings of the VLDB Endowment, 3(1-2),
588-597.

Neff, M. S., Byrd, R. J., & Boguraev, B. K. (2004). The Talent system: T EXTRACT
architecture and data model. Natural Language Engineering, 10(3-4), 307-326.

Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., & Vaithyanathan, S. (2008, April). An

algebraic approach to rule-based information extraction. In Data Engineering, 2008.
ICDE 2008. IEEE 24th International Conference on (pp. 933-942). IEEE.

Shen, W., Doan, A., Naughton, J. F., & Ramakrishnan, R. (2007, September). Declarative
information extraction using datalog with embedded extraction predicates. In
Proceedings of the 33rd international conference on Very large data bases (pp. 1033-
1044). VLDB Endowment.

