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Abstract 

This paper will review a novel approach taken within the field of information extraction based on 
the relational database model. Current methods and frameworks for information extraction make 
use of grammar-based languages, such as regular expressions, in the form of rule patterns that 
are applied sequentially to unstructured text, such as a document, in order to produce spans of 
text that represent some meaning within a domain. These grammars are typically applied in a 
cascading fashion where rules are applied in a priority order over the result of a previous rule. 
This approach is known to become very difficult to maintain and scale as the rules for the 
information extraction tasks grow. The performance of this approach quickly degrades as the 
document sizes increase. This paper will survey the use of a relational model for constructing 
SQL-like statements to represent information extraction rules. These statements can then be 
translated into an execution plan where additional optimization is performed using well-known 
query optimization algorithms producing an optimized execution plan. 
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Introduction 

The volume of unstructured data produced each day by social media, user forums, and 

online journals continue to grow at rapid rate. This data is typically written in human natural 

languages and therefore lacks structure and definition required by computer systems in order to 

capture its semantic meaning. The field of information extraction seeks to develop methods to 

process this data in a systematic way to produce structured information that can be stored in 

conventional relational database for further analysis via relational querying and data mining 

techniques.  

This paper will focus on relational methods and frameworks for addressing numerous 

challenges involved with information extraction through the application of relational database 

theory. This work includes a survey and review of the state-of-the-art of information extraction 

using relational methods that build on the success of the modern relational database system first 

pioneered by Astrahan et al (Astrahan et al 1976). This paper will also explore the current 

barriers faced by this approach and identify future work to address these challenges.  

Background 

The practice of extracting information from unstructured data with rules is not new or 

novel. The classic rules-based approach typically employs the use of regular expression 

grammars by experts to extract entities and relationships from text. Through a systematic 

application of these rules, information is transformed from unstructured to structured that can 

then be persisted in a relational database schema. Once the data is stored in a relational form, it 

can easily be analyzed through querying and data mining techniques. 

The field of information extraction was formalized during several conferences held 

during the 1980’s. Many of these conferences were organized by the DARPA (Defense 

Advanced Research Projects Agency) organization, which was looking to automate the 

processing of military intelligence reports by extracting information from these reports into 

specific structured fields. Their focus was around reducing the human labor required to process 

these reports with the intent of reducing the latency within the workflows that supported 

intelligence agencies. One of these major conferences was the Message Understanding 
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Conference (MUC) held in 1987 that invited academic and industry groups to define and 

formalize the information extraction as a field (Fagin et al, 2016).  

The motivations for studying and improving the accuracy and efficiency of Information 

Extraction are rooted in the need for organizations to process the large volume of unstructured 

text that is produced daily in this information age. The ability for an organization to gather 

insights by mining information from social media feeds, online publications, blogs, and user 

forums can provide a competitive edge. Today, enterprise uses information extraction to support 

brand and reputation management (responding to social media comments), business intelligence 

(including sales leads and targeted marketing), automation of data entry, and monitoring business 

interests (such as within the area of pharmacovigilance monitoring for adverse effects of 

medication). All these areas get a considerable amount of attention and investment due to its 

impact to expanding revenue opportunities as well as improving efficiency (Chiticariu et al, 

2010).   

Information Extraction (IE) can be broken down into various tasks. These tasks include 

the detection of Entities, Relations, Events, Sentiments, Co-references, and Table extraction. 

These tasks can be carried out using various methods. For Entity extraction, a common approach 

is to use a construct called a Dictionary, which represents the terms of interest for a given 

domain. Dictionaries are typically used by pattern matchers that scan through a document and 

marks (or annotates) the span (or offset location) for terms matched within the dictionary. The 

resulting spans represent the entities extracted from the document. Another method for extracting 

entities involves the use of rules. These rules are typically represented as regular expression 

grammars. These expressions may look for certain patterns of characters such as capitalized 

words that may indicate that a proper noun, such as the name of a person, is being referenced. 

Figure 1 demonstrates the extraction of two person names, ‘Bob Scott’ and ‘Holly Smith’ from a 

passage of text. The method for extracting these names could have been dictionary based that 

enumerates person names or a regular expression that looks for capitalized words. 
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Figure	1 

Once entities spans have been identified within a document, they can be used to support 

the Relationship extraction task. Relationships describe some semantic meaning between two 

entities. These relationships can take various forms. The relationship can be taxonomic, such as a 

hierarchical ‘IS-A’ relationship between entities. For example: ‘Cancer’ IS-A ‘Disease’. The 

relationships can be ontological, such as ‘Advil’ treats ‘Headaches’. These relationships can also 

be syntactic, such as the relationship between a word within a sentence and it’s corresponding 

part-of-speech (noun, verb, adjective, etc) or semantic role. Lastly, relationships can represent 

referential binding between words such as subject and objects or noun and pronouns. These tasks 

for extracting relationships may be represented using rules that enumerate the relationships of 

interests and these rules can be represented as a collection of regular expressions, annotation 

patterns, or other relationship graphs. 

Review of Cascading Grammar Methods 

Most modern programming languages today provide support for regular expressions. The 

availability of regular grammars makes them a popular choice for programmers to extract 

information from text. Regular expressions are typically interpreted by a Finite-State Transducer 

(FST) that accepts input as a sequence of characters and produces an output based on the 

transitions between pre-defined states within the FST.  Figure 2 illustrates an example of a finite-

state machine (FS) that accepts characters (in blue) as input and produces characters (in green) as 

output. Regular expressions can be compiled into an 

FS machine that is interpreted by a FST at runtime to 

process input text and produce output (Boguraev et al, 

2004).  

Figure	2 
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Boguraev et al assert that the finite-state matching and transduction over tokens and 

annotations provides flexibility and convenience through rapid configuration of custom analysis 

engines that can be layered within a pipelined architecture of interoperable components based on 

a formal language description (regular expression syntax) that sits on top of a separate FS 

abstraction which serves as the FST interpretation engine (Boguraev et al, 2004). Boguraev et al 

are the first to propose a finite-state cascading approach for supporting patterns of annotations in 

addition to tokens enabling the ability to layer regular grammar expressions on top of prior 

expressions. This approach addressed known limitations where multiple sub-expressions were 

composed into a single expression resulting in an exponential growth of total number of 

expressions required to cover all combinations of rule segments. For example, identifying a 

mailing address from documents may take on different forms. Ideally, this problem can be 

decomposed into smaller extraction tasks that scan for person names and then look for cities and 

states referenced within the surrounding text of the person name. This task is further complicated 

by the occurrence of intermediate tokens that represent a phone number or an email address. 

Rather than having to enumerate expressions for every combination of these tokens and allowing 

for the existence of certain intermediate tokens. Boguraev et al propose a method for 

decomposing such expressions into smaller parts by allowing for separate layered expressions 

that can detect atomic segments of the tasks. Figure 3 is an example of a closing signature 

commonly found within an email that contains person names, cities, states, email, street address, 

and phone numbers. These parts can be extracted by atomic expressions, which in turn can be 

referenced by a series of cascading expressions. This approach is an example of a layered 

abstraction that helps reduce the 

complexity for describing the 

rules of a given extraction task. 

Figure 4 shows an example of 

how these cascading expressions 

can be used to build upon 

previous expressions to produce 

a higher-level expression. 

Figure	3,	example	of	an	email	signature 
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Figure	4,	example	of	cascading	grammar	for	extracting	signature 

 

The cascading approach also addressed issues when multiple expressions matched on 

overlapping spans producing ambiguity that could only be resolved by assigning priorities to the 

rules. Unfortunately this approach is very brittle since priorities are fixed and therefore may not 

always reflect the correct resolution for a given extraction task (Yunyao et al, 2011).  

 Another important aspect contribution to the grammar expression method for information 

extraction was the definition of a common specification for representing the rules. Appelt et al, 

presented the Common Pattern Specification Language (CPSL), which today is considered a de 

facto standard (Appelt et al 1998). This specification helped provide a uniform language for 

expressing these regular expressions that was independent of the underlying interpretation engine 

allowing for portability of these patterns across various frameworks. This was an important 

contribution and would prompt the creation of multiple frameworks, tools, and architectures for 

representing text analysis pipelines that leveraged CPSL-based annotators that could be pipelined 

to perform complex tasks. Many of these frameworks and architectures have been developed to 

help address the complexity of managing and executing large collections of rules for large data 

sets. Examples of these frameworks include the Java Annotation Pattern Engine (JAPE) 
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(Cunningham 1999), General Architecture for Text Engineering (GATE)  (Cunningham 2002), 

and Unstructured Information Management Architecture (UIMA) (Ferrucci et al 2004).  

A major drawback with using regular expression grammar approach for information 

extraction is quickly encountered when scaling to large data sets and/or a large collection of rules 

(Reiss et al 2008). Reiss et al demonstrate that these scaling issues are inherent limitations of 

cascading grammar languages that can only be resolved through applying additional parallel 

computing but lack direct optimization of its methods.   

Another issue with the cascading grammars approach is observed when there exists 

ambiguity caused by variations in text that can produce overlapping results by several 

expressions. Although applying a priority to the rules can mitigate some issues, this is often not 

sufficient for more complex extraction patterns. The following example helps illustrate the 

ambiguity issue caused by overlapping grammar expressions.  

	

Figure	5,	example	rules	for	extracting	person	names 

When applying the extraction rules shown in figure 5 to the passage of text shown in 

figure 1, it produces multiple spans (annotations) for the tokens “Tomorrow”, “Bob”, “Scott”, 

“Holly”, and “Smith”. Some of these tokens received multiple overlapping spans such as “Bob”, 

“Scott”, and “Holly”, which were identified by the FirstName rule and the Cap (or Capitalized 

name) rule. The token “Scott” was identified by all three rules including FirstName and 

LastName. Figure 7 shows the resolution to the overlap ambiguity after applying the rule priority 

shown for each rule in figure 5.  This resolution produces an incorrect result that assigns “Scott” 

as a FirstName instead of a LastName.  

	

 

Figure	6,	result	of	applying	rules	for	extracting	person	names	
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Figure	7,	shows	the	incorrect	assignment	of	Scott	to	First	Name 

Due to the cascading dependencies of these rules, this incorrect assignment propagates through 

the downstream rules ultimately producing incorrect results. This is demonstrated when 

attempting to apply expressions that identify a Person. 

Figure 8 illustrates an example of three rules that depend on 

the result of the previous rule set in order to identify a 

Person. These rules are not looking for patterns of tokens or 

characters but instead looking for patterns of previously 

labeled spans that trigger the production of a Person span. 

When these rules are applied over the previous result, it incorrectly produces three persons as 

follows: “Bob”, “Scott”, and “Holly Smith”.  The identification of  “Scott” as a person was 

caused by the incorrect resolution to the ambiguity that “Scott” can 

sometimes refer to a first name and sometimes can refer to a last name. 

Because the first set of rules matched Scott as both, the priority of these 

rules was applied to ultimately assign Scott as a first name. This 

incorrect assignment caused the rule <First> to detect Bob and Scott 

and then <First> <Last> to detect Holly Smith producing a total of 

three persons instead of one. 

 This simple example helps demonstrate the issue known as Lossy Sequencing 

encountered when applying a cascading grammar approach where overlapping spans are dropped 

at a lower layer and therefore produces erroneous results at a later layer of rules. As the number 

of rules and cascading layers grows, the cost of maintenance increases dramatically resulting in a 

very brittle system where regression can be introduced even for very minor changes to these 

rules. Due to the cascading nature of these expressions and their interdependencies, changes 

made in one expression will also require a cascade of changes to avoid breaking rules (Chiticariu 

Figure	8,	rules	for	extracting	Person	from	
First	Name,	Last	Name,	and	Cap	spans. 

Figure	9,	Persons	identified	
by	cascading	rules 
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et al, 2018).  This growth of complexity is also observed in the degradation of system 

performance when executing large collections of rules over large documents. Reiss et al 

demonstrates that scaling issues are inherent limitations of cascading grammar languages (Reiss 

et al, 2008). Chiticariu et al present a thorough comparative assessment of cascading grammar 

performance across different CPSL-based (Appelt et al, 1998) frameworks such as JAPE 

(Cunningham et al, 1999) and GATE (Cunningham et al, 2000). The result of this assessment 

demonstrated the exponential growth in processing time as the complexity of rules and document 

sizes grow (Chiticariu et al, 2010).  

Review of Relational Methods 

An alternative method for information extraction proposed by Reiss (Reiss et al 2008) 

and further developed by Krishnamurthy (Krishnamurthy et al 2009), applied the relational 

database model (Astrahan, 1976) by leveraging relational algebra for representing information 

extraction rules and defined an extension to SQL called Annotation Query Language (AQL). 

This approach allows information extraction to benefit from years of database research in the 

areas of query optimization and execution strategies. AQL supports relational operators such as 

projection, selection, join operations (among others) and further extends it with special extraction 

operators over word-tokens allowing for dictionary-based and pattern-based matching. This 

approach also defines an extension to the relational data model by exposing an entity type called 

a “Span” that is represented as offsets <begin, end> within a document. Documents are 

represented as a relational table of tuples that have been previously tokenized (or chunked) into 

sentences. Each sentence is represented by a tuple with the begin and end offsets marking the 

start and ending position of each sentence relative to the whole document. 

Information extraction occurs through the process of defining relational queries that 

represent annotations as relational views over the initial Document table produced by tokenizing 

the document into sentences. Through the use of “SELECT-FROM-WHERE” statements, 

information is extracted from unstructured form to a relational schema representation. The result 

Figure	10,	extended	relational	data	model	for	information	extraction 
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of these statements is placed in a new View that can be selected and projected to construct 

additional Views.  These statements can be compiled into relational algebra where query-style 

optimization is performed. Lastly, the optimized algebra is assembled into an execution plan that 

is further optimized based on a cost-model.  Figure 11 depicts the process of compiling and 

optimizing AQL into an execution plan. 

 

Recent work by Fagin et al (Fagin et al 2016) formalizes this AQL relational algebra and 

language proposed by Reiss and Krishanmurthy in a theoretical framework called “Document 

Spanners” and proves that the expressivity of these relational languages is expressively 

equivalent to regular grammar languages. Further work by Fagin et al demonstrates how 

additional techniques such as “consolidation” of overlapping spans further enhances the 

expressivity of the framework (Fagin et al 2013). Fagin asserts that the balance between 

simplicity and expressivity of an IE language is crucial to its adoption in the real world. The 

language must have straightforward semantics so that it is easy to understand and debug but must 

be minimally expressive in order to address complex extraction tasks. Freydenberger et al build 

upon Fagin’s work by comparing the expressive power of the Document Spanner framework to 

other extraction models including extended regular expressions (Freydenberger et al, 2017). 

AQL statements can be aggregated together using SQL-like JOIN operations that 

combine the tuples into a new view that where the JOIN predicate condition evaluates to true.  

Aggregation is typically performed over previous views that extract additional fields (attributes) 

using a Dictionary or a Regular Expression pattern. The statement shown in figure 12 below 

serves as an example of a rule for extracting capitalized words (i.e. names) from the document. 

The statement begins with a “create view” indicating that a new view will be produced within the 

relational model followed by the “extract regex” which indicates the use of a regular expression 

that will be applied across the tuples in the Document table. The “as name” defines the name for 

the field (or attribute) name that will be used to hold the matched text by the regular expression. 

Figure	11,	AQL	Compilation	process 
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Applying this rule (figure 12) to the previous example in figure 6 produces a new table view 

called Caps that contains tuples with the name values of “Tomorrow”, “Bob”, “Scott”, “Holly”, 

and “Smith”.  This rule is equivalent to the <CAPS> rule example shown in figure 5. 

 

 

Another common extraction uses the “extract dictionary” operation that scans each tuple 

within the Document table looking for tokens that match words defined within the dictionary. 

The dictionary construct is a simple list of terms that can be enumerated within a plain text file or 

defined inline within AQL using a “create dictionary” statement followed by a comma separated 

list of string. The following example shows the AQL statement for extracting LastName from the 

Document table. 

 

Applying the above AQL to the text in figure 6 produces a new view called Last with two 

tuples including the names “Scott” and “Smith”. The same approach can be used to extract first 

names using a dictionary that contains a list of first names. These statements collectively provide 

create	view	Caps	as	
extract	regex	/[A-Z](\w|-)+/	on	D.text	as	name		
from	Document	D	

Figure	12,	example	of	an	AQL	statement	for	extracting	
capitalized	words	from	the	Document. 

create	view	Last	as	
extract	dictionary	LastDict	on	D.text	as	name		
from	Document	D	

Figure	13,	result	of	
applying	AQL	rule	in	
figure	12	to	figure	6	text. 
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the atomic annotations for extracting first and last names annotations. Next these resulting views 

need to be joined together to produce the Persons. Figure 14 shows an example AQL program 

that extracts the Persons by combining the views produced by the First, Last, and Caps 

statements.  

	

Figure	14,	AQL	statement	that	produces	Person	from	First,	Last,	and	Caps	views.		(Chiticariu	et	al,	2010) 

The approach taken involves first performing a select query that joins <First> with 

<Caps>, <First> with <Last>, and <First> followed by the union of the resulting tuples. The 

operator “CombineSpans” is used to concatenate the span offsets between to Spans. This 

produces a new Span where the beginning offset is the smaller of the two and the ending offset is 

the greater of the two spans. This results in a longer span that covers both provided span. As an 

example, combining the first span in a document with the very last span would produce a new 

span that holds a string containing the entire document, where the first span starts at offset 0 and 

the second span ends at the length-1 of the document. Another operation used is “FollowsTok” 

that serves as a predicate within the select operation that requires that one span must occur after 

another span. This enforces a specific order. Figure 14 includes two uses of “FollowsTok”. The 

first use occurs where First Name must precede Cap spans. The second use requires First Name 

precedes Last Name. The ability to enforce a specific order helps prevent invalid (or spurious) 

tuples with patterns that are not recognized as Persons. This also serves as a performance 

optimization since it reduces the result set of tuples produced by each SELECT operation. 

Finally, the use of “consolidate” is used to combine final tuples produced in the Person view 
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using the name field as the consolidation field. The following illustration shows the step-by-step 

result when applying the AQL for extracting FirstName, LastName, Caps, and lastly Person 

views. 

	

(Chiticariu	et	al,	2010)	 

This relational method for information extraction allows for overlapping spans to flow 

through to a higher-order rule (or layer) where it can then be disambiguated within the context of 

a particular rule objective. In this example, the consolidate operation is applied to all the names 

resulting in a correct final result that includes two persons: “Bob Scott” and “Holly Smith”. 

In addition to these basic operators, AQL also features semantic and syntactic role 

labeling (SRL) facility, expanding the expressivity of the language by allowing for additional 

qualifiers within conditional JOIN predicates (Chiticariu et al, 2010). This helps further reduce 
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ambiguity caused by words that can have multiple meanings or can be used in different parts-of-

speech. 

 

Optimizations and Performance of Relational Methods 

The relational-based information extraction rules appear to have a natural performance 

advantage over a corresponding regular expression rule. In many cases a hand-tuned regular 

expression rule executed an order-of-magnitude slower than an un-optimized relational rule. 

Because regular expressions operate over characters and relational rules provide semantics for 

operating over whole tokens (such as terms defined by a dictionary table) or other views, the 

search space is reduced for a relational rule and therefore results in a faster processing time 

(Krishnamurthy et al 2009).  

 The primary advantage for a relational-rule is the ability to optimize an execution plan 

that represents a collection of rules at compile-time. Using relational query optimization theory, 

a search for the optimal execution plan is identified at compile time resulting in dramatic 

improvement in runtime performance (Krishnamurthy et al 2009). Krishnamurthy et al found an 

additional order-of-magnitude improvement when comparing optimized relational rules to un-

optimized relational rules. The optimization techniques include 

cost-based optimization of operations such as with the “conditional 

evaluation join” (CEjoin) operator by avoiding evaluation of the 

right-hand argument when left-hand produces no tuples 

(Krishnamurthy et al 2009). An example of this optimization 

occurs when the evaluation of one side of the JOIN fails to produce 

any tuples. This allows for skipping the other side of the JOIN to 

avoid needless computation. For example, in figure 15 if the left-

hand side Dictionary does not produce any result, then there is no 

need to apply the expensive Regex (right-hand-side) of the 

Dictionary.  

Another optimization technique involves pushing down selection and projection 

operators within the AQL operator graph. This approach works by reducing the intermediate 

Figure	15	 
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results produced at earlier stages of the operator graph and therefore reducing the computation 

required when evaluating predicates within Join operations  (Reiss et al, 2008). The following 

operator graph shows an example of pushing down the projection and selection. 

	

(Chiticariu	et	al,	2010)	 

Because the projection applied to relation A and B is performed at an earlier point, the 

resulting number of fields (columns) that is carried forward is reduced. Similarly, by pushing 

down select operators, the number of tuples is reduced. 

Another important optimization technique involves JOIN reordering. Because JOIN 

operations are commutative, it is possible to rearrange the order of the joins. The total number of 

unique arrangements that must be considered grows exponentially. A naïve approach would 

consider each possible join order evaluated using a cost-model to choose the lowest estimated 

cost. This however results in unnecessary overhead and wasted work since the cost of a sub-plan 

will be recomputed multiples times. Dynamic Programming algorithms are effective at optimally 

evaluating problems where recomputation can be avoided using a cache to store previously 

computed sub-plans. The following illustration shows multiple rearrangement options produced 

by reordering the joins from an initial plan. An example of the reoccurring sub-plans is shown in 

red. If the A	 B	sub-plan	is	evaluated	once,	it	can	be	cached	and	used	later	to	avoid	duplicating	the	

calculation. 
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(Chiticariu	et	al,	2010)	 

Selinger et al proposed a dynamic programming algorithm for optimally evaluating to 

most efficient join ordering (Selinger et al, 1979). Selinger was a pioneering member of the IBM 

team that developed System R, considered the first relational database. Selinger et al presented 

the following recursive formulation for considering left-deep plans: 

 

The following example shows the computation applied using Selinger’s algorithm for R1

R2 R3 R4: 
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 In addition to query optimization techniques, other techniques focus on optimizing 

extraction operators such as “extract dictionary” and “extract regex” such as the examples shown 

earlier in figure 14. The first method is called Shared Dictionary Matching. This method helps 

combine all the dictionaries used by the AQL program into a single dictionary. This shared 

dictionary allowed for removing redundant dictionary entries and avoids duplicate copies of 

dictionaries held in memory (Reiss et al, 2008). Dictionaries can be represented as a tree of 

characters with terms located at the leaves allowing for linearithmic search times for matching 

dictionary tokens. By combining multiple dictionaries into one large dictionary, there is only one 

tree structured required that preserves its depth and only increases the number of leaves 

(Chiticariu et al, 2010).  

 The other optimization focuses on the “extract regex” operator. Reiss et al assert that 

some regular expressions can benefit from a simpler but less expressive regular expression 

matcher that does not allow for group capturing, look-back, or peek-ahead but has significantly 

better performance. By applying Regular Expression Strength Reduction, the evaluation of the 

regular expression can be performed faster because it does not require certain extended 

capabilities of full strength regular expressions (Reiss et al, 2008). This novel approach proves to 

be pivotal in speeding up the evaluation of AQL plans at runtime. Chiticariu et al demonstrate 

the performance evaluation of AQL compared to JAPE (Cunningham et al, 1999), which uses 

cascading grammar method. Their results show a 10x improvement in throughput when 

comparing to a hand-tuned (i.e. optimized) equivalent regular expressions. 

 

Challenges and Issues 
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A critical aspect of information extraction is the accuracy of the information produced by 

the rules framework. Liu et al proposes a semi-automatic rule refinement technique that uses 

database tuple provenance to improve the precision while preserving recall accuracy. The rule 

refinements eliminate false positives using back-tracking over tuple provenance to correct or 

rewrite a rule (Liu et al 2010). Unfortunately this approach can only improve false-positives, 

which impact precision accuracy, but no method is presented for addressing false negatives or 

low recall accuracy.   

Another challenge with the relational approach is the learning curve that must be 

overcome to educate programmers to build these programs. Most programmers are familiar with 

constructing and using regular expressions to extract strings from text. Learning a new paradigm 

and language such as AQL, creates a barrier to adoption and may explain why this approach has 

not become widely adopted by industry or academia.  

AQL programs tend to be compiled as modules that include both the executable 

statements (i.e. the AQL program) as well as the data resources (such as dictionaries and tables) 

used by these programs resulting in an anti-pattern that makes it difficult to dynamically 

configure different dictionaries at runtime. This means that multiple versions of the same AQL 

program needs to be compiled and loaded for each domain that does not share the same 

dictionary resources.   

Lastly, the dependency on a Database System introduces additional overhead and 

complexity to the deployment and maintenance of programs. The popularity of cloud-native 

application and micro-services has influenced the building of smaller lightweight programs that 

can be constantly started and stopped based on volume. This relational system for information 

extraction would require a redesign to support a more service-based approach that can allow for 

this dynamism. 

Future Work and Conclusion 

The relational methods for information extraction presented in this paper are based on a 

theoretical foundation that benefits from years of research in the areas of query optimization and 

execution. This approach shows great promise in its ability to reduce the complexity of large-

scale information extraction systems while providing faster computation of IE tasks without the 



REVIEW OF RELATIONAL METHODS FOR INFORMATION EXTRACTION 21 

	
maintenance issues encountered with cascading grammar alternatives. Furthermore, the 

relational methods demonstrate advantages in dealing with ambiguity and therefore increasing 

the relative accuracy of IE tasks.  

The relational method for IE remains an active area of research. Additional work is 

needed to explore dynamic optimization by taking into account actual costs, instead of just 

estimated costs, at runtime. This improvement has the potential to provide an additional 

performance gains. Another area that can be improved is the development of visualization tools 

and intuitive editors for allowing non-technical subject matter experts to construct AQL 

programs without requiring formal education in computer science and AQL programming.  

Finally, the inclusion of additional operators such as String concatenation functions that are not 

available today, but often required when attempting to construct new view with attribute values 

that are composed of non-contiguous spans of text.  
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